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SUMMARY 
An unstructured grid, finite volume method is presented for the solution of two-dimensional viscous, 
incompressible flow. The method is based on the pressure-correction concept implemented on a semi-staggered 
grid. The computational procedure can handle cells of arbitrary shape, although solutions presented herein have 
been obtained only with meshes of triangular and quadrilateral cells. The discretization of the momentum 
equations is effected on dual cells surrounding the vertices of primary cells, while the pressure-correction equation 
applies to the primary-cell centroids and represents the conservation of mass across the primary cells. A special 
interpolation scheme s used to suppress pressure and velocity oscillations in cases where the semi-staggered 
arrangement does not ensure a sufficiently strong coupling between pressure and velocity to avoid such 
oscillations. Computational results presented for several viscous flows are shown to be in good agreement with 
analytical and experimental data reported in the open literature. 
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1. INTRODUCTION 

Unstructured grid schemes are increasingly held to form the basis of hture CFD technology in all 
areas of engineering applications. While posing not inconsiderable challenges in the context of 
turbulent near-wall flow, unstructured grids are steadily gaining in popularity, especially in CFD for 
aeronautical and aerospace applications, for they offer exceptional geometric flexibility and permit 
virtually unrestricted local grid-density control and flow-sensitized, dynamic adaptation. 

Although the methodology is rooted in the finite element environment, it may be readily 
implemented w i h  the finite volume framework, the principal advantages being the unconditional 
satisfaction of the conservation principle inherent in the flow-governing transport equations and the 
relative simplicity of the approximation process. Both advantages arise from the fact that the 
discretization simply involves the application of a volume integral of any transport equation over the 
cells formed by the unstructured grid, which can then be expressed as a balance of cell-face fluxes. 

Because of the special significance of unstructured grids to the complex geometries encountered in 
external aerodynamics and the relative simplicity of the flow physics involved in this environment, 
efforts made over the past few years have focused principally on compressible flow in which the 
conservation laws governing mass and momentum are solved with a time-marching scheme to yield the 
density and velocity fields. For incompressible conditions this is at best inefficient and at worst 
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unstable. Indeed, it is only tenable in conjunction with an artificial compressibility linking density to 
pressure via a fictitious relationship-an approach which can only be used if a steady-state solution is 
sought. The widely used alternative in the structured-grid environment is the solution of the pressure or 
pressure-correction equation, which replaces that describing mass continuity. The implementation of 
this technique within the unstructured-grid environment is relatively recent. 

Early work on incompressible flow has progressed within the finite element framework or variants 
thereof. Patankar and his associates,’+ Prakash:.6 Prakash and Pataknar7v8 and Baliga and his group”2 
have introduced and implemented the concept of the control volume finite element method 
(CVFEM). Alternative storage arrangements for pressure and velocity were adopted and investigated 
in conjunction with either unequal-order interpolation functions or with uniform-order interpolation 
for collocated pressure and velocities. The approximation of the convective face fluxes was based on 
exponential differencing, and the pressure was determined by means of the SIMPLER or SIMPLEC 
algorithms which are standard practices in the structured-grid environment. 

Much more recent is the formulation of unstructured-grid, Jinite volume schemes for incompressible 
flow. Lonsdale and WebsterI3 have proposed a pressure-correction approach on a gnd consisting of 
hexahedra. Despotis and T~angaris’~ have introduced a modified Chorin methodI5 for unstructured 
staggered grids. Williams16 has presented a segregated, collocated, cell-vertex Helmholz pressure 
scneme. Wattenon” has adopted a cell vertex, collocated, Runge-Kutta time-marching scheme to 
integrate the decoupled system of momentum and pressurecorrection equations in time. The last two 
schemes involved the use of explicit artificial dissipation to remove pressure oscillations arising from 
pressure-velocity decoupling; which is a consequence of the collocated storage arrangement. On the 
other hand, Gosman et a1.18 and Raw et al.19 have adopted a form of the interpolation practice 
originally proposed by Rhie and Chad' for collocated, structured-grid schemes. This practice 
counteracts chequerboard oscillations by introducing implicitly a stabilizing fourth-order difision 
term. The last two methods have been developed for quadrilateral cells in 2D space and hexahedral 
cells in the 3D environment, both offering a node arrangement analogous to that present in a structured 
gnd and thus easing the adaptation of the Rhie-Chow interpolation technique. 

This paper presents a new variant of the unstructured finite volume method formulated for the 
solution of 2D steady, viscous, incompressible flows. The scheme employs arbitrarily shaped, semi- 
staggered control volumes for the momentum and pressure-correction equations to promote pressure- 
velocity coupling, but a single set of nodes (the vertices of the primary cells) is used to store the 
Cartesian velocity components. The data structure is constructed in such a way that the cells of the 
unstructured grid can be polygons of any shape and number of edges. However, as unstructured 
meshes with cell shapes other than triangles and quadrilaterals are neither useful nor easily generated, 
results are presented only for meshes consisting of cells of these two shapes. Although the semi- 
staggered formulation provides, in the majority of applications, adequate damping of pressure-velocity 
oscillations, it is occasionally necessary to introduce a small measure of additional dissipation. To this 
end, the above-mentioned Rhie-Chow scheme is adapted for use in the unstructured-grid environment 
and applied to cell-face velocities which contribute to the mass imbalance term of the pressure- 
correction equation. 

2. GOVERNING EQUATIONS 

Within the finite volume framework, the most appropriate basis for the discretization process is the 
integral form of the conservation laws. When a set of non-overlapping volumes is used to cover the 
computational domain, this form of equations guarantees local and global conservation provided that 
the discretized equations are satisfied (i.e. once the numerical solution algorithm has yielded a fully 
converged state). 
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In this study, attention is confined to steady, laminar, incompressible 2D flows, in which case the 
integral forms of the continuity and momentum equations can be written, respectively, as 

(rvnz + T,,,,n,,) dE. 
In writing the above equations, the following assumptions have been made. 

(a) All variables are in nondimensional form. 
(b) The density and viscosity of the fluid are invariant and equal to their respective reference values 

used for normalization. 
(c) The Reynolds number Re is given by 

Re = UIrfLIef / V I r f .  (4) 
(d) E is the closed surface surrounding the control volume over which the conmation of mass and 

momentum is considered; ii is the unit vector normal to E, positive when directed outwards, 
with n, and n,, its components along the Cartesian axes x and y respectively. 

(e) 2 = 2 + $ is the velocity vector, with u and u its components along the Cartesian axes x and y 
respectively. 

( f )  T,, rW, etc. are the components of the shear stress tensor. 

3. APPROXIMATION 

3.1. The generic cell 

The control volume over which equation (1) is to be applied is a polygon which consists of an 
arbitrary number of straight edges. Using the notation in Figure 1, the unit vector can be written as 

ii dE = A$- AxT, ( 5 )  

- - 
i 

Figure I .  Notation associated with equations (1x3) and ( 5 )  
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where Ax = x2 - x1 and Ay = y2 - y l .  This notation is consistent with an integration of any 
conservation equation over the control volume in counterclockwise direction. 

The approximation of the contour integrals in the governing equations (1H3) is effected by a 
summation of fluxes over the edges of the numerical polygonal control volume and use of equation ( 5 )  
for the normal unit vector. This process results in the following discretized form of the governing 
equations: 

where the subscript e denotes a quantity on any edge and ie is the total number of edges that form the 
closed numerical control volume. 

3.2. Pressurevelocity coupling 

There are three major approaches to the solution of the system of equations (6H8) for 
incompressible flow: the first is the pseudocompressibility approach;” the second is based on the 
coupled block-implicit solution of the momentum and continuity equations;2’ the third is the 
decoupled solution for the velocity and pressure fields, the last involving a replacement of the 
continuity equation by an analogous equation fiom which the pressure can be determined. There are 
two common alternative options within the last route: transforming the continuity equation into a 
Poisson equation for the pressure or replacing this equation by an approximate equivalent for the 
pressure correction. In the present study the latter option has been chosen. 

A central issue in the solution of the system of governing equations within a pressure-based scheme 
is the manner in which the natural coupling between the velocity and pressure fields is maintained 
numerically. Here, strong coupling is secured by using a staggered storage wherein velocities are 
defined at vertices of the primary cells while pressure is defined at cell centres (Figure 2). Following 
the SIMPLE approach of Patankar and Spalding?’ the velocity and pressure fields are considered to 
each consist of a provisional part and a correction: 

p = P* +PI, u = u* + UI, 2, = v* + v’, (9) 
where the asterisk denotes the provisional part and the prime the correction. 

Figure 2. Present storage arrangement 
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3.3 Momentum equations 

In order to derive the discrete form of the momentum equations (7) and (8), a numerical control 
volume must be defined over which the numerical integration can be performed. In the present 
staggered approach, where a cell-vertex storage arrangement is followed for the velocities, the most 
appropriate choice for this volume is the centroid dual of the primary cells. This polygon is formed by 
connecting the centres of the cells which meet at the same vertex. Figure 3 depicts one such polygon 
around the central vertex iv2 for both triangular and quadrilateral meshes. In what follows, this polygon 
will be referred to as the macrovolume. 

The discretization procedure entails the evaluation of the various terms in equations (7) and (8) on 
the edges of the macrovolume. With attention focused on the edge ic,-icZ (Figure 3), the 
approximation adopted for the convective terms, diffusive fluxes and pressure on this edge are given 
below for the x-momentum equation. 

Convective terms. These are given by 

convectionicl -ic2 = uicl-icJ7uicl-ic2, (10) 

Since no temporal fragment exists here, the above terms provide the most important contributions to 
the diagonal coefficient of the final linear system of equations governing the velocity components. If, 
for the sake of enhanced stability, a first-order upwind scheme is used to approximate uicI-ic2 in 
equation (1 0), i.e. 

~ I i c l - i c f l ~ i c , - i c 2  = klui- - h u i v ,  * (12) 

k1 = m~(O,fluxic,-iq)* k2 = max(0, -jlqcI-ic2), (13) 

(14) 

then the components of the fluxes on the edge arise as 

(uAY)icl-ic2 = 4 (uicl + uic2)cYicl - yic2 1 9  (vh)icl-ic2 = f(vic, + uic2)(xicl 

The velocities at the cell centres that are involved in equation (14) are obtained by a distance-weighted 
interpolation from surrounding cell-vertex values. 

Difisive terms. The viscous terms that appear in equation (7) require the approximation of velocity 
derivatives on the edges of the centroid dual. To this end, the auxiliary control volume shown in Figure 

........ * * ................e................. 
............. . ,  . .  

.... * ......... 
...... 

ivi 
.. 

I '  IVI  

ia ., . .  _ .  .................. ...... ..i ................. . .  
._.. 

(a) (b) 

Figure 3.  Control volumes for momentum equations: (a) triangular mesh; (b) quadrilatRal mesh 
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4 is used. Velocity derivatives are considered invariant within this control volume and are 
approximated by the expression 

where i =  1, 2 (cyclic),j= 1, 2 (cyclic), k= 1,. . . , 4  (cyclic), u1 = u, 2 = v, XI = x ,  A? = y and V, is 
the area of the auxiliary control volume. 

Pressure. The average pressure along any edge of the macrovolume cell is approximated by means 
of the trapezoidal rule using pressures stored at appropriate centroids of the primary cells. Thus, for the 
edge ic1-ic2 of Figure 3,  

Pic,-ic, = ;<Pic, +P ic , ) .  (16) 

Final momentum equations. Insertion of equations (12H16) into the x-momentum equation (7) 
yields an expression that relates the velocity value at the central vertex of Figure 3 to the velocities and 
pressures at neighbouring vertices. If, in addition, the pressure and velocity values in h s  expression 
are replaced by the corresponding provisional values in the sense of equation (9), then the h a 1  
equation for the provisional velocity u* at the vertex ivz becomes 

ie ie nb 

i= 1 i= 1 j= l  
-fc@f +P,*,l)6'f+l -fi) f CArei + C A : b c b ( U v  v>- (17) 

Equation (17) is the final discretized form of the x-momentum equation. The h t  term on the right- 
hand side contains the pressure at the vertices of the macrovolume (cell centres of the primary cells), 
the second contains the provisional velocities at the vertices of the cells that meet at iv2, and the third 
contains all the velocity fiagments which cannot be incorporated into the diagonal (left-hand-side) 
term or the second term on the right-hand side. This last term contains u- and v-velocity fragments 
residing at the cell centres surrounding iv2. In the solution sequence, the values of these velocity terms 
are set equal to their values in the previous global iteration. 

The corresponding discretized form of the y-momentum equation arises as 
ie ie nb 

i= 1 i= 1 j= I 
A;&, = +Pi: l ) (Xf , ,  -xf) + CArq + C A g ; b ( U ,  v). (18) 

Equations (17) and (18), when written for all the vertices, give the two linear systems of equations 
which yield values for the provisional velocity components provided that the pressure field is known. 
Here, the solution of these two systems is performed by a segregated point Gauss-Seidel procedure. 
For each vertex, a loop over the edges that form the centroid dual around that vertex is performed to 
evaluate the various terms in equations (6) and (7), and then the velocity on that edge is computed. In 
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most cases one or two Gauss-Seidel iterations per global iteration (consisting of a complete update for 
velocities and pressure) have been found to be sufficient, although this number depends on the initial 
pressure and velocity fields. 

It is appropriate to note here that no underrelaxation has been used during the iterative Gauss-Seidel 
procedure for the momentum equations. Velocities have been underrelaxed only at the end of the 
procedure, through 

ui:, = au& + (1 - a)u", v& = auc + (1 - a)$-, (19) 

where the superscript o denotes values at the previous global iteration and a is the underrelaxation 
factor. 

3.4. Pressure-correction equation 

The pressure-correction equation is derived from the continuity equation integrated over the primary 
cells of the grid. In Figure 5 the bold lines identify the numerical control volumes for the pressure 
correction equation for one of the cells whose centres define the macrovolume of Figure 4. The task is 
to derive an equation for the pressure correction at the centre of the cell ic2. The sole purpose of this 
equation is to steer the pressure to a state compatible with the mass-continuity principle. 

Integration of the continuity equation (6) over this control volume and use of equation (9) gives the 
result 

M C  nec 

where the mass-imbalance term on the right-hand side requires special treatment and will be discussed 
in the next section, while nec is the number of edges which form each primary cell. 

A key issue in the discretization of equation (20) is the manner in which edge values of the velocity 
corrections are to be related to pressure-comction values at the adjacent cell centres. In an earlier 
variant of the present method23 the discretized momentum equations (1 7) and (1 8) were linearized and 
truncated, in accord with the conventional SIMPLE approach, to yield linear relations linking velocity 
and pressure corrections at cell vertices. For example, for the vertex iu2 of Figures 4 and 5 this practice 
gave 

ie 

........ 3..k,v . : 0 '. .. --i-iin: ..... 

0 
icx i v a  

, . . . . . . 
........ , : o  icx ....... 

. ._.....' ........ : o :  ... 

Figure 5. Control volumes for pressure correction equation 
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where equations (19) have also been taken into account. The edge value of the velocity correction was 
then related to the respective vertex values by 

with similar expressions applicable to the v-velocity components. Combinations of equations (20x23)  
then yielded the pressure correction at the cell centre icz as 

in which the various terms on the right-hand side arise as a natural consequence of the algebraic 
manipulations and are given by the expressions 

(26) 

In equations (25) and (26), are the diagonal coefficients of the momentum equations, ivj 
(1 = 1, . . . , nec) are the vertices which form the primary cell, nec is the number of vertices (or edges) 
which form the primary cell, the superscript v denotes co-ordinates of the vertices, the superscript c 
denotes co-ordinates of the cell centres, icl denoting the co-ordinates of the centre of the cell in 
question, and the notation 'rest' indicates that the cell considered (namely ic2) must be excluded fiom 
the summation. 

Unfortunately, diagonal dominance of equation (24) is not secured with the procedure described so 
far. This is because the coefficients anb in 

ap = Carib (27) 

lap1 2 Cl%BI. (28) 

are not all positive, so that the condition for diagonal dominance of the system, 

is not satisfied, the practical manifestation being numerical instability in a number of applications. 
In view of the difficulties encountered with the above method, an alternative route to deriving the 

pressure-correction equation was adopted. Central to this alternative approach is the assumption that 
the pressure gradient at each vertex can be considered equal to the mean value of the gradient over the 
macrovolume around the vertex. Application of the Gauss divergence theorem and use of the 
trapezoidal rule along each side of the macrovolume around the vertex iv2 (Figure 3) yields the 
following expressions for the pressure derivatives at iv2: 

where Ri5 is the area of the macrovolume around the vertex i q .  
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Combining equations (21), (22) and (29) leads to the following relationships between the velocity 
corrections and the derivatives of the pressure correction at iv2: 

It is next assumed that relations of the form (30) also pertain to any edge (say e) of the primary cell 
over which continuity is to be satisfied: 

In order to obtain expressions for the pressure-correction derivatives in equation (3 l), the auxiliary 
cell shown in Figure 4 is used again. The Gauss divergence theorem for the derivatives and the 
trapezoidal rule for the edge values are used again to give the following expressions for the pressure 
derivatives within the auxiliary control volume: 

When these expressions are inserted into equations (31) and the results for the edge-velocity 
corrections are substituted into the continuity equation (20), the pressure correction equation forpic2 is 
obtained as 

with 

The terms in (36a) which pertain to the edge e are evaluated by linear interpolation from the 
corresponding terms at the vertices of the edge. For example, for the edge iv1-iv2 of Figure 5, 

As should be evident from equations (34>-(36), the coefficients of the pressure corrections in 
equation (33) are always positive, and the condition expressed in equation (28) is therefore satisfied 
provided that the pressure-correction values at the vertices of the grid contained in the right-hand-side 
sum of equation (33) are not expressed in terms of the unknown pressure-correction values at the 
primary-cell centres. This independence can be achieved, for example, by setting the term to zero, 
which is entirely permissible, since the only purpose of the pressure-correction equation is to ensure 
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that the mass imbalance is driven to zero. With this simplification 
pressure-correction equation is given by 

nec 

i= I 
Ljc2p:,, = - c m* + c LgL; 

adopted, the final form of the 

(37) 

The main advantage of equation (37) over (24) is that it ensures the diagonal dominance of the linear 
system. An added bonus is the reduced numerical stencil associated with equation (37) relative to that 
of (24). Both numerical stencils are presented in Figure 6 for the particular example of a triangular cell 
system. It will be noted that equation (37) requires, in the case of a triangular mesh, only three cells 
adjacent to the central cell with which the equation is associated. For a quadrilateral cell arrangement, 
four neighbour cells are involved. 

Equation (37), when written for all the internal primary cells of the grid, gives the linear system 
which yields the values of the pressure correction at the cells centres. This system is solved by the 
same Gauss-Seidel scheme as that applied to the momentum equations. However, since all pressure- 
correction values are set equal to zero prior to any global iteration cycle, more internal pressure- 
correction sweeps than momentum iterations need to be perfomed per global iteration, typical sweep 
numbers being three to five. It has been observed that the iterative stability of the scheme as a whole is 
highly sensitive to details of the pressure-correction solution. In particular, when the iterative sequence 
commences with a velocity field which generates large mass residuals, extreme levels of pressure 
correction are generated and this often leads to instability. In such circumstances, the introduction of 
underrelaxation into the Gauss-Seidel solution for the pressure-correction equation has been found to 
be helpful. In the majority of the test calculations that will be presented below, no underrelaxation has 
been used for linear iterations or sweeps. In a few cases, an underrelaxation factor of 0-5-0-8 was used 
in the initial phase of the iteration process, with the value gradually increased to unity. 

3.5. The mass residual 

It is recalled that the mass residual is given by equation (20): 
nec 

i=l 
Em* = E(u,*Aye - v,*dr,). 

The task is to compute this term for each primary cell of the grid in order to form the right-hand side of 
the pressure-correction equation. 

In a structured-grid scheme in which a staggered arrangement of velocity and pressure is adopted, 
the mass residual can be computed simply by a summation of mass fluxes through primary-cell faces 
using velocities which are explicitly available at these faces. In contrast, a collocated arrangement 
necessitates the use of an interpolation method which extracts the face velocities from nodal values, 

(4 (b) 

Figure 6. Numerical stencils associated with pressure-correction equation: (a) equation (24); (b) equation (37) 
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Linear interpolation might seem an obvious choice, but this practice is incompatible with the Rhie- 
Chow scheme normally used in a collocated-storage scheme to relate velocity fluctuations at the 
primary-cell faces to pressure fluctuations at associated neighbouring nodes. Hence the choice of 
interpolation for determining the cell-face velocities requires considerable care. 

In the present semi-staggered strategy, the coupling between pressure and velocity is much stronger 
than in a fully collocated framework. Occasionally, however, oscillations appear in the pressure field, 
since the velocity components are stored at a single set of  location^.^^'^^ To ovefcome the problem, the 
Rhiexhow interpolation scheme was modified for use in the present unstructured method and 
implemented herein. It is well established that the scheme, when used together with underrelaxation in 
the momentum equation, can result in converged solutions which depend on the value of the 
underrelaxation factor. To avoid this dependence, the modifications suggested in References 25-27 
were adopted. 

For the purpose of explaining how the mass residual is evaluated, it is sufficient to focus attention on 
one mass flux, say that through the face i q - i y  of the primary cell in Figure 5 .  F k t ,  upon combining 
equations (17)-(19), the provisional velocity values at the vertices iv, and ivz can be expressed as 

where, for example, 

Equations (39) can be rewritten using (29) as 

Oscillations originate from the numerical stencil used for the computation of the pressure derivatives 
in the momentum equations. The Rhie-Chow interpolation scheme implies the replacement of this 
pressure derivative (or gradient in the general case) by another expression which enforces the coupling 
between pressure values on both sides of each edge and the velocity on that edge. To achieve this, face 
velocities are computed from expressions similar to equation (41): 

where now 

Pressure derivatives on the edge are computed as average values over the auxiliary control volume of 
Figure 4, using equation (32), in which pressure-comxtion values should be replaced by pressures. 
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Substitution of equation (42) and an analogous expression for the provisional v,-value into equation 
(38) yields the final value for the mass residual. 

Although the mass-flux interpolation scheme, as presented above, is fully incorporated into the 
present numerical methodology, it has been found that its application is often not necessary as the 
pressure-velocity coupling seems to be strong enough to prevent oscillations fiom appearing in the 
h a 1  pressure field. In these cases, cell-edge mass fluxes have been obtained by simple linear 
interpolation of velocity: 

3.6. Ovemll Algorithm 

The whole solution algorithm may be summarized as the following sequence of steps. 

1. Initial pressure and velocity fields are defined. 
2. The momentum equations (1 7) and (1 8) are solved to update the provisional velocity field. 
3. The mass imbalance term of equation (37) is computed. 
4. The pressure-correction equations (37) are solved. 
5.  The velocity corrections are obtained fiom equations (3 1) using (32), (36a) and (36b). 
6. The velocity field is updated using equation (9). 
7. The pressure field is obtained using equation (9), with the pressure correction values being 

8. Steps 2-7 are repeated until convergence, which is assumed to be reached when the mass 
underrelaxed prior to the update. 

residuals in all cells have fallen below a prescribed value. 

4. DATA STRUCTURE 

One of the key components of any unstructured-grid method is the data structure underlying the 
method. Any data structure contains mainly connectivity information, i.e. provides the information 
necessary to connect each grid component (cell, vertex, edge) to adjacent components (not necessarily 
of the same type). It can also include other types of information, e.g. the ‘parent-child’ relationship 
between the geometric elements of an unstructured grid in a dynamically adaptive solution procedure. 
All the information contributing to a data structure must be stored, and the more information that is 
stored, the lower tends to be the CPU time consumption associated with recovering unstored data by 
use of search algorithms. Thus in any unstructured-grid method a compromise has to be struck 
between memory and CPU time requirements associated with connectivity. 

It is recalled that the primary cells of the grid are allowed to be polygons of an arbitrary number of 
edges and that any integration over a control volume is strictly performed in an anticlockwise direction. 
Both facts must be accounted for in the data structure that is used in the present algorithm. 

For any unstructured grid, connectivity information can be handled within two distinctly different 
types of data structures. The first is edge-bused and stores for each edge the identification integers of 
the two vertices which form the edge and the integers of the two cells which meet on that edge (Figure 
7(a)). The second is cell-bused and stores for each cell the number and identification integers of the 
edges which form the particular cell (Figure 7(b)). If these two data sets are combined, any geometric 
information for a 2D unstructured grid can be supplied, irrespective of the shapes of the primary cells 
of that grid. 

Despite the fact that two different storage arrangements appear in the present method, a unified 
solution approach is achieved. Both the cell-vertex procedure for the momentum equations and the 
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3 

(a) (b) 
Figure 7. (a) Edge-based and (b) cell-based data structure 

cell-centred procedure for the pressure-correction equation are realized by successive sweeps over the 
edges of the primary cells of the gnd. The only difference lies in the fact that an outer loop over the 
vertices is performed in the former case, while an outer loop over the primary cells is performed in the 
latter case. The anticlockwise integration over the different control volumes is ensured by the 
convention implied by Figure 4: for each edge of a primary cell the vertices which form that edge and 
the cell centres of the two cells adjacent to that edge are stored in contiguous locations in the 
connectivity matrix. Any reference to the particular edge can then easily reproduce quantities related 
either to the edge of the primary cell iv1-iv2 (Figure 4) and the normal vector G ,  or to the edge of the 
macrovolume icl-icz and the normal vector Gc. The one-to-one correspondence between the edges of 
the primary control volumes and the macrovolumes facilitates code programming and allows handling 
of different cell shapes in a unified manner. In fact, only minor changes to the actual coding are 
necessary if the decision is taken to revert from the present semi-staggered approach to a collocated 
one, whether based on a cell-centred or a cell-vertex arrangement. 

5 .  RESULTS AND DISCUSSION 

5.1. Overview 

In this section the method presented above is validated by reference to two laminar test cases: the 
flow in a lid-driven square cavity and the flow over a backward-facing step. In earlier stages of 
development, inviscid test cases2* as well as the flow over a flat plate23 were also considered and 
successfully computed. 

The generation of unstructured grids is not a topic of concern in the present work, nor does it present 
any challenges in the simple geometries considered below. The simple unstructured (triangular) gnds 
needed here were generated from rectangular meshes by subdividing each quadrilateral cell into four 
triangles and introducing the appropriate connectivity in accord with the data structure identified in 
Section 4. 

5.2. Lid-driven cavity Jlow 

The lid-driven square cavity flow is a standard benchmark for testing numerical schemes for the NS 
equations because of its simplicity, the balanced presence of all modes of transport associated with 
recirculation and the availability of numerous computational solutions in the open literature. 

Test calculations have been performed for four values of the Reynolds number: 100,400, 1000 and 
3200. Grid dependence has been investigated for almost all of the cases tested. Furthermore, the 
sensitivity of the solution to the semi-staggered storage arrangement and the skewness of the grid have 
been examined in association with alternative momentum-interpolation techniques. A comprehensive 
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presentation and discussion of all test calculations is presented by Thomadaki~ .~~ Here, only a 
restricted selection of representative results is included. 

In all cases the flow inside the cavity was initially at rest and at constant pressure. No-slip and 
impermeability conditions were imposed on all walls, with the velocity at the upper wall set equal to 
unity. A zero-gradient condition was specified along all walls for the pressure correction, which is 
compatible with a fked (zero) velocity normal to the walls. 

Figure 8 presents the u- and v-velocity profiles along the vertical and horizontal centrelines of the 
cavity for the case Re= 100. Three different grids have been used: a uniform quadrilateral 55 x 55 
grid, a 55 x 55 quadrilateral grid clustered towards the walls and a triangular grid which was obtained 
by subdividing each rectangle of the clustered quadrilateral grid into four triangles (5941 vertices, 
1 1,664 cells). The results obtained are in close agreement with the numerical solutions of Ghia et ~ 1 . ~ '  
and B~rggraf.~'  Solutions for Re=400 with the same quadnlateral and triangular grids used for 
Re= 100 are shown in Figure 9. The results obtained with the triangular grid are again in close 
agreement with the numerical results of Ghia et al., but those obtained with the comer quadrilateral 
grid are visibly less accurate. 

As the Reynolds number increases, the sensitivity of the solution to the grid density rises markedly. 
For the highest Reynolds number, Re = 3200, a grid-dependence study was initially performed with 
quadrilateral grids only. The grids chosen included the clustered 55 x 55 mesh used for the Re = 100 
case and uniform 80 x 80 and 120 x 120 quadrilateral grids, the last mesh being clustered towards the 
walls. Figure 10 reveals considerable differences between the present 120 x 120 quadrilateral-grid 
solution and that of Ghia ef al., while coarser grids obviously yield even larger discrepancies. In an 
effort to identify the grid density required to achieve results comparable with those of Ghia et al., the 
clustered quadrilateral 120 x 120 grid was transformed into a triangular grid by subdividing each 
rectangle into four triangles. The resulting grid consists of 28,561 vertices and 56,644 cells. The 
velocity profiles thus obtained and presented in Figure 10 are now seen to be in close agreement with 
the benchmark data. The outcome of using the same grid for Re = 1000 is shown in Figure 1 1. Here 
too the computed distributions agree closely with the benchmark data. 

One of the major concerns in this study was to identify the influence of the semi-staggered 
arrangement on the accuracy of the results and on the convergence behaviour. As mentioned earlier, the 
use of a collocated arrangement results in oscillations in the pressure field due to the poor coupling 
between pressure and velocity. These oscillations are suppressed when damping is added to the 
pressure (or pressure-correction) equation, either implicitly, through a special treatment of the 
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Figure 8. Cavity flow, Re= 100: (a) u-velocity profiles through vertical centreline; @) u-velocity profiles through horizontal 
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Figure 10. Cavity flow, Re=3200: (left) u-velocity profiles through vextical centreline; (right) +velocity profiles through 
horizontal centreline 

v e l o c i v  or pressure or e~plicit ly. '~*'~ In the present semi-staggered method the pressure 
field was found to be very smooth, even when no artificial dissipation was added to the solution. Figure 
12(a) presents the pressure profiles (expressed in terms C,, = 0, - p,f)/0-5pU&) at various vertical 
positions along the cavity, for the case of Re = 3200, obtained with the 80 x 80 uniform quadrilateral 
grid. Two sets of curves are presented: one arising from the modified Rhie-Chow interpolation 
scheme, as described in Section 3.5, and the other obtained without this practice (equation (44)). As is 
evident from Figure 12(a), the pressure profiles are entirely smooth, even when no artificial dissipation 
is used, and are virtually indistinguishable. Perfectly smooth results were also obtained for the finer 
100 x 100 (not shown) and 120 x 120 quadrilateral grids (Figure 12(b)) as well as for the very fine 
triangular grid (Figure 12(c)) without the use of the Rhie-Chow interpolation scheme. Results obtained 
for Re = 1000 are entirely consistent with the above observations. 

In the present procedure, the angle between any cell face and the line connecting the two cell centres 
on either side of that face plays an important role in the strength of coupling between pressure and 
velocity and is thus important to the smoothness of the solution. Figure 13 presents the values of this 
angle for the finest clustered triangular mesh formed by subdividing the quadrilateral 120 x 120 mesh. 
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The value of this angle, which can be used as a measure of the skewness of the grid, reaches 40" near 
the boundaries, which represents a high degree of skewness. It is evident therefore that even for a very 
fine grid, for which the level of artificial diffusion is low, and at a high degree of skewness concurrent 
with high Reynolds numbers, the present method provides a strong enough coupling between the 
pressure and velocity fields, thus preventing oscillations. 

Some information on the convergence characteristics of the method is finally given in Figure 14. 
Convergence is characterized by the absolute sum of the mass residuals. The decay of this norm for 
three values of Re with the quadrilateral uniform 55 x 55 grid is given in Figure 14(a). For Re = 100 
and 400 the underrelaxation factors for momentum and pressure correction were 0.7 and 0-3 
respectively, while values of 0.5 and 0.1 were used for Re = 3200. Within any one global iteration, a 
single inner iteration for momentum and five iterations for pressure correction were executed. Figure 
14@) presents the convergence history for Re = 3200 and grids of 80 x 80, 100 x 100 and 120 x 120 
quadrilateral cells. The underrelaxation factor for momentum varied between 0.5 and 0.8, while that 
for pressure correction was held at 0.1. Again, one and five inner iterations per global iteration, were 
performed for the momentum and the pressure-correction equations respectively. Finally, Figure 14(c) 
shows the sensitivity of the convergence rate to the number of inner Gauss-Seidel iterations for the 
pressure-correction equation. The optimum number is seen to be around 20, indicating that satisfaction 
of mass continuity to a high level of accuracy within any global iteration is a significant contributor to 
the overall economy of the solution. In all cases a single inner iteration was performed for the 
momentum equations. Increasing this number did not improve the convergence rate. 

5.3. Flow over a backward-facing step 

are the primary means for assessing 
the numerical solution. The geometrical details, given in Figure 15, are those of Reference 32, namely 
upstream channel height H=5 mm, step height S=4.71 mm and channel height, aft of the step, 
Lref= 2H. The Reynolds number, based on Lref, is 389. Two different grids were used: a quadrilateral 
80 x 70 grid (5600 vertices, 5451 cells; Figure 16(a)) and the corresponding triangular grid obtained 
by subdividing each rectangle into four triangles (1 1,OS 1 vertices, 2 1,804 cells; Figure 16(b)). Along 
the inlet boundary the experimental variation in velocity was imposed, while at the outlet the velocities 
were extrapolated from conditions just upstream of this boundary, in effect representing the imposition 
of zero-gradient conditions. The computation started from a uniform velocity condition, satisfjling 

For this second test case, experimental data of Armaly et 
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Figure 12. Cavity flow, Re=3200: pressure profiles at various x-positions; (top left) uniform 80 x 80 quadrilateral gnd: 
without Rhie & Chow interpolation; with Rhie & Chow interpolation: (top right) clustered 120 x 120 quadnlateral 

grid; without Rhie & Chow interpolation; (bottom) fine triangular grid; without Rhie & Chow interpolation 

mass continuity. Figure 17 shows a comparison between computed and experimental velocity profiles 
at various locations along the channel. Agreement is seen to be vexy close, the solution obtained with 
the triangular grid being better. The computed reattachment point at x = 3.65s is very close to the 
experimental value of 3-7s. With the triangular mesh, approximately 5000 global iterations were 
required to achieve a reduction of the mass-residual norm by five orders of magnitude. 

6. CONCLUSIONS 

An unstructured-grid algorithm for incompressible flows has been presented in detail and validated by 
reference to well-established benchmark data, either numerical or experimental. The key elements of 
the method can be summarized as follows. 

1. Arbitrarily shaped control volumes can be accommodated. 
2. The semi-staggered approach implemented provides adequate pressur~velocity coupling in most 

circumstances. 



598 M. THOMADAKlS AND M. LESCHZlNER 

Figure 13. Cavity flow: values of angle between edges and line which connects djacent cell centres for finest triangular grid 

3. In isolated circumstances a finther strengthening of the pressure-velocity coupling is 
advantageous and is effected by a Rhiexhow type momentum-interpolation technique adapted 
to the unstructured-grid environment. 

4. The improved discretization scheme implemented for the pressure-correction equation provides a 
stable and robust numerical algorithm. 

5 .  The implementation of a cell-vertex arrangement for the momentum equations and a cell-centred 
arrangement for the pressure-correction equation is successfully handled by the edge-based data 
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Figure 14. Cavity flow: convergence histories for various test cases (np. number of internal iterations for pressurecorrection 
equation; nu, corresponding number of iterations for momentum equations) 
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Figure 15. Backward-facing step flow: geomeay 
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Figure 16. Backward-facing step flow: (a) quadrilateral 80 x 70 grid; (b) triangular grid 
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Figure 17. Backward-facing step flow: velocity profiles (---, guadnlateral 80 x 70 grid; -, triangular grid; 
0, experimental data3 

structure. Despite the conceptual complexity that this arrangement imposes, the actual coding of 
the method is quite straightforward and simple. 

6. Higher-order convection approximations are necessary to improve the numerical accuracy and 
hence to reduce grid-density requirements; this aspect is now being pursued, as is a more implicit 
solution scheme designed to reduced the number of iterations required to achieve convergence. 
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